Gelombangtransversal merambat sepanjang tali AB. Persamaan simpangan gelombang dititik B dinyatakan sebagai: y = 0,03 sin 2ÄŽ‚¬, (60 t-2x) , x dan y dalam meter dan t dalam sekon. Jika x adalah jarak AB maka: (1) amplitudo gelombang 0,03 cm, (2) panjang gelombang 0,5 m, (3) cepat rambat gelombang 30 cm/s, (4) frekuensi gelombang
PertanyaanSuatu gelombang sinus merambat pada tali yang panjangnya 60 cm . Untuk bergerak dari simpangan maksimum ke nol, suatu titik memerlukan waktu 0 , 025 s . Hitunggaya tegangan tali jika panjang gelombang 0 , 4 m dan massa tali 480 g !Suatu gelombang sinus merambat pada tali yang panjangnya . Untuk bergerak dari simpangan maksimum ke nol, suatu titik memerlukan waktu . Hitung gaya tegangan tali jika panjang gelombang dan massa tali !... ... AAA. AcfreelanceMaster TeacherJawabangaya tegang tali sebesar 12,8 tegang tali sebesar 12,8 soal, pergerakan gelombang sinus dari simpangan maksimum menuju ke nol akan membentuk gelombang. Maka Sehingga, Jadi, gaya tegang tali sebesar 12,8 soal, pergerakan gelombang sinus dari simpangan maksimum menuju ke nol akan membentuk gelombang. Maka Sehingga, Jadi, gaya tegang tali sebesar 12,8 N. Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!1rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!
Dilansirdalam buku Getaran dan Gelombang (2009) karya Yohanes Surya, pengertian frekuensi adalah ukuran jumlah putaran ulang per peristiwa dalam satuan detik dengan satuan Hz. Hertz atau Hz diambil dari pakar fisika asal Jerman, Heinrich Rudolf Hertz yang menemukan fenomena ini pertama kali. Frekuensi juga bisa diartikan sebagai jumlah Kita telah mempelajari besaran pada gelombang, penurunan persamaan gelombang sinusoidal. Hal ini akan memudahkan kita memahami materi gelombang berjalan. Berikut pengertian, persamaan rumus, dan analisis gambarnya. Kata “sinusoidal” dapat bermakna banyak hal. Ia dapat merujuk pada grafik lengkung atau bisa juga merujuk pada gelombang. Maksud sinusoidal berarti mirip dengan grafik atau gelombang sinus. Bentuknya akan dimulai dari bukit, lalu lembah. Jadi, gelombang sinusoidal dapat bermakna grafik dengan bentuk bukit-lembah atau memang sebuah gelombang yang berbentuk bukit-lembah. Baca sebelumnya Besaran Gelombang Mekanik ǀ Panjang Gelombang, Cepat Rambat, Periode, Frekuensi Sudut dan lainnya GELOMBANG BERJALAN GELOMBANG SINUSOIDAL Gelombang berjalan adalah merambatnya gelombang atau pulsa pada sebuah medium dengan jarak tempuh tertentu. Misalnya, kita menggetarkan sebuah tali yang panjang. Gelombang tersebut akan bergerak merambat ke ujung yang berlawanan dari pusat gangguan gelombang. Kita tidak akan membahas pertemuan antara beberapa gelombang atau penggabungan beberapa gelombang. Kita hanya fokus pada gelombang yang merambat. Titik pusat gangguan kita sebut titik O. Sedangkan, ujung lain yang ingin kita tuju adalah titik P. Saat titik O mulai digetarkan, gelombang merambat hingga sampai pada titik P. Dari hal ini jelas bahwa titik O bergetar lebih lama dibandingkan titik P karena ia lebih dulu. Waktu yang dibutuhkan titik O untuk bergetar adalah tO dan waktu yang dibutuhkan titik P untuk bergetar adalah tp, dimana tO tentu lebih besar dibanding tP. Waktu yang digunakan gelombang untuk merambat dari titik O ke P adalah t. Perhatikan penurunan persamaan pada gambar Penurunan Persamaan Simpangan Gelombang Berjalan Gelombang Sinusiodal dengan Arah Perambatan ke Kanan-klik gambar untuk melihat lebih baik-Gambar Persamaan Simpangan, Kecepatan, Percepatan Getaran, Fase, Beda Fase, Sudut Fase Gelombang Berjalan Gelombang Sinusiodal-klik gambar untuk melihat lebih baik- Jika kita meninjau arah perambatan dari O ke P ke kanan, maka tanda akan negatif. Jika meninjau arah perambatan dari P ke O ke kiri, maka tanda akan positif. Sebenarnya, sumber getaran tetap dari O. Perambatan gelombang disini hanya bersifat perspektif cara menghitung saja. SYARAT PENGGUNAAN PERSAMAAN RUMUS GAMBAR Terdapat beberapa syarat untuk menggunakan persamaan pada gambar sebagai berikut 1 Gelombang yang dianalisis adalah gelombang berjalan, bukan gelombang berdiri stasioner. Hanya ada satu sumber getaran dan bukan gabungan gelombang interferensi maksimum dan minimum 2 Arah perambatan gelombang dapat diketahui, baik diberikan sebagai keterangan atau tersirat dalam fungsi 3 Bentuk gelombang berjalan seperti gelombang sinusoidal, yaitu dimulai dari titik setimbang, naik, kembali ke titik setimbang, turun, lalu naik atau hematnya dimulai dari bukit lalu lembah. 4 Titik yang dijadikan acuan tidak harus sumber getaran dan ujung lain yang berlawanan. Baca selanjutnya Gelombang Stasioner Gelombang Berdiri Ujung Bebas & Terikat ǀ Pengertian, Persamaan Rumus, & Analisis Gambar KESIMPULAN Gelombang berjalan adalah gelombang yang merambat dari ujung sumber getaran ke ujung yang berlawanan. Ia bukanlah gabungan gelombang, seperti petikan senar gitar, pantulan gelombang. Kita akan membahasnya pada gelombang stasioner berdiri. Itulah pengertian, penurunan persamaan rumus, dan analisis gambar gelombang berjalan. Gelombangtranversal merambat pada tali yang panjangnya 2,5 m selama 5 detik. jika sepanjang tali terdapat 3 bukit dan 2 lembah. tentukan: a. panjang gelombang; b. frekuensi gelombang; dan c. cepat rambat gelombang. Question from @lialailiyah - Sekolah Menengah Atas - Fisika
FisikaGelombang Mekanik Kelas 11 SMAGelombang Berjalan dan Gelombang StasionerBesar-Besaran FisisGelombang sinusoidal dengan frekuensi f merambat sepanjang tali tegang. Setelah tali diam, gelombang lain dirambatkan dengan frekuensi 2 f , kelajuan gelombang kedua adalah... a. dua kali lipat kelajuan gelombang pertama b. setengah dari kelajuan gelombang pertama c. sama dengan kelajuan gelombang pertama d. tidak ada hubungan kelajuan antara kedua gelombang e. kelajuan gelombang sebanding dengan nilai frekuensinyaBesar-Besaran FisisGelombang Berjalan dan Gelombang StasionerGelombang MekanikFisikaRekomendasi video solusi lainnya0154Dua gabus berada di puncak-puncak gelombang. Keduanya ber...Dua gabus berada di puncak-puncak gelombang. Keduanya ber...0153Seorang siswa mengamati gelombang pada permukaan air deng...Seorang siswa mengamati gelombang pada permukaan air deng...0347Ketika bermain di kolam renang, Umar meletakkan dua buah ...Ketika bermain di kolam renang, Umar meletakkan dua buah ...0221Seutas tali digetarkan pada salah satu ujungn ya sehingga...Seutas tali digetarkan pada salah satu ujungn ya sehingga...
Gelombangsinus pada Gambar 2 merambat searah sumbu x positif dan mempunyai frekuensi 18,0 Hz Diketahui 2a = 8,26 cm dan b/2 = 5,20 cm. Bertemu: a) Amplitudo. b) Panjang gelombang. c) Periode. d.Kecepatan gelombang. Penyelesaian a) Amplitudonya adalah a = 8,26 cm / 2 = 4,13 cm b) Panjang gelombangnya adalah l = b = 2 x20 cm = 10,4 cm.
Quantum Kelas 12 SMARadiasi ElektromagnetikSumber Radiasi ElektromagnetikSuatu gelombang elektromagnetik merambat secara sinusoidal dalam arah sumbu-X. Jika panjang gelombang elektromagnetik tersebut adalah 50 m dan medan listrik dari gelombang elektromagnetik tersebut bergetar dalam bidang XY dengan amplitudo sebesar 22 N/C, tentukan a. frekuensi gelombang elektromagnetik. b. besar dan arah medan magnet B ketika medan listrik gelombang elektromagnetik mempunyai nilai maksimum dalam arah sumbu-Y negatif, dan c. persamaan gelombang elektromagnetik dalam B = Bmaks cos kx - omega t.Sumber Radiasi ElektromagnetikRadiasi ElektromagnetikFisika QuantumFisikaRekomendasi video solusi lainnya0233Suatu gelombang elektromagnetik merambat secara sinusoida...0108Energi yang menghangatkan bumi termasuk cahaya tampak, si...Teks videoHalo friend suatu gelombang elektromagnetik merambat secara sinusoidal dalam arah sumbu x. Jika panjang gelombang elektromagnetik nya adalah 50 m dan medan listrik dari gelombang elektro magnetik tersebut bergerak dalam bidang x y dengan amplitudo 22 Newton per kolom. Tentukan berapa frekuensi gelombangnya besar dan arah Medan magnetnya ketika medan listrik gelombang elektron mempunyai nilai maksimum dalam arah sumbu y negatif dan yang terakhir persamaan gelombang elektromagnetik dalam b = b, maka cos KX Min Omega t pertama untuk mencari besar frekuensi kita dapat menggunakan rumus kecepatan sudut yaitu Omega = 2 PF kecepatan sudut pada gelombang elektromagnetik juga berlaku sebagai k dikali c. Jadi rumusnya adalah KC = 2 PF Kak di sini atau bilangan gelombang dirumuskan lagi menjadi 2 p Belanda maka 2 phi Belanda dikali c = 2 PF di sini dulu apinya bisa kita coret maka kita temukan F =Belanda C di sini adalah cepat rambat gelombang elektromagnetik yang besarnya 3 * 10 ^ 8 per 6 dan y 50 hasilnya kita dapat frekuensinya adalah 6 * 10 ^ 6 Hz yang kedua untuk mencari besar medan magnet kita dapat menggunakan rumus yang menghubungkan antara medan magnet dan medan listrik yaitu BM = 4 C = 22 per 3 * 10 ^ 8 hasilnya dapat Medan magnetnya adalah 3 kali 10 pangkat min 8 Tesla arahnya ke sumbu z negatif Kenapa ke sumbu z negatif karena arah rambat arah medan listrik dan medan magnet saling tegak lurus dengan mengikuti aturan kaidah tangan kanan di mana arah rambat sebagai ibu jari arah medan listrik sebagai empat jari dan arah medan magnet sebagai arah telapak tangan dan yang terakhir untuk persamaan gelombang elektromagnetik b. = b maka cos KX Omega t. Tadi kita tahu Omega atau kecepatan sudut pada gelombang elektromagnetik berlaku sebagai k dikali C maka persamaanjadi b = b m cos k dikali X min c t = 7,33 kali 10 pangkat min 8 Cos 2 phi Belanda dikali X min 3 * 10 ^ 8 t = 7,33 kali 10 pangkat min 8 Cos 2 phi per 50 kali x min 3 * 10 ^ 8 hasilnya persamaannya adalah b = 7,33 kali 10 pangkat min 8 cos phi per 25 x min 3 * 10 ^ 8 phi per 25 t test wa sampai jumpa di soal selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Difraksigelombang yakni peristiwa berpindahnya energi di sepanjang puncak gelombang ke arah daerah yang terlindung. Refleksi gelombang yakni peristiwa pemantulan energi gelombang yang biasanya disebabkan oleh suatu bidang bangunan di lokasi pantai. (m/s), λ = panjang gelombang bunyi (m), dan f = frekuensi bunyi (Hz). 2.2. Pengaruh Suhu
PertanyaanGelombang sinusoidal dengan frekuensi f merambat sepanjang tali tegang Setelah tali diam, gelombang lain dirambatkan dengan frekuensi 2f. kelajuan gelombang kedua adalahGelombang sinusoidal dengan frekuensi f merambat sepanjang tali tegang Setelah tali diam, gelombang lain dirambatkan dengan frekuensi 2f. kelajuan gelombang kedua adalahdua kali lipat kelajuan gelombang pertamasetengah dari kelajuan gelombangsama dengan kelajuan gelombangtidak ada hubungan kelajuan pertama pertama antara kedua gelombangkelajuan gelombang sebanding dengan nilai frekuensinyaOKO. KhumairahMaster TeacherMahasiswa/Alumni Universitas Negeri PadangPembahasanDiketahui Cepat rambat gelombang dapat dinyatakan dengan persamaan berikut Namun pada soal tidak disebutkan bahwa panjang gelombang dari kedua gelombang tersebut adalah sama. Sehingga tidak ada hubungan kelajuan antara kedua gelombang. Jika dikatakan pada soal bahwa panjang gelombang dari kedua gelombang tersebut adalah sama, maka Jadi kecepatan gelombang kedua adalah dua kali gelombang Cepat rambat gelombang dapat dinyatakan dengan persamaan berikut Namun pada soal tidak disebutkan bahwa panjang gelombang dari kedua gelombang tersebut adalah sama. Sehingga tidak ada hubungan kelajuan antara kedua gelombang. Jika dikatakan pada soal bahwa panjang gelombang dari kedua gelombang tersebut adalah sama, maka Jadi kecepatan gelombang kedua adalah dua kali gelombang pertama. Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!6rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!NKNufaisah KarimahBantu banget obatobat tertentu, misalnya morfin. Dengan demikian jumlah molekul obat yang menduduki reseptor (di mana efek obat terjadi) akan menurun; penghambatan resorpsi setelah pemberian oral, misalnya habituasi bagi sediaan arsen. Dengan meningkatkan dosis obat terus menerus, pasien bisa menderita keracunan, karena efek sampingnya juga menjadi lebih kuat. BerandaCepat rambat gelombang transversal pada seutas tal...PertanyaanCepat rambat gelombang transversal pada seutas tali dengan panjang 96 m adalah 15 m/s. Jika gaya tegangan tali tersebut 0,5 N, maka massa tali tersebut adalah ...Cepat rambat gelombang transversal pada seutas tali dengan panjang 96 m adalah 15 m/s. Jika gaya tegangan tali tersebut 0,5 N, maka massa tali tersebut adalah ... 0,42 kg0,31 kg 0,35 kg 0,25 kg 0,21 kg FAF. AfriantoMaster TeacherMahasiswa/Alumni Institut Teknologi BandungJawabanjawaban yang tepat adalah yang tepat adalah Ditanya massa tali? Penyelesaian Cepat rambat gelombang pada tali dapat dicari dengan persamaan Dengan demikian massa tali tersebut adalah 0,21 kg. Jadi, jawaban yang tepat adalah Ditanya massa tali? Penyelesaian Cepat rambat gelombang pada tali dapat dicari dengan persamaan Dengan demikian massa tali tersebut adalah 0,21 kg. Jadi, jawaban yang tepat adalah E. Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!316Yuk, beri rating untuk berterima kasih pada penjawab soal!©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia jawabya plisss dan harus ada caranya IPA : Materi Tekanan Zat PadatRules: lengkapmudah di pahamiRapiKerjakan di foto, Lebih baik + BeA Panjang ML pada gambar adalahA. 6 cmB. 6√2cmC. 9 cmD. 12 cm bantu yang udah bantu makasi bantu kak makasi ya yang udah bantu berapa lama masa mengandung kucing
Soal 1 Sebuah gelombang berjalan memenuhi persamaan y = 0,20 sin 0,40π60t – x dengan x dan y dalam cm dan t dalam sekon. Tentukan a arah perambatan gelombang, b amplitudo gelombang, c frekuensi gelombang, d panjang gelombang, dan e cepat rambat gelombang! Solusi Kita mengubah bentuk y = 0,20 sin 0,40π60t – x menjadi y = 0,20 sin 24πt – 0,40πx, agar sama dengan bentuk y = A sin t – kx, maka dengan menyamakan kedua persamaa kita peroleh a tanda dalam sinus adalah negatif, maka arah perambatan gelombang adalah ke kanan. b amplitudo A = 0,20 cm c = 24π rad/s, oleh karena = 2πf maka, f = /2π = 24π/2π = 12 Hz d k = 0,40π/m. Oleh karena k = 2π/λ, maka 2π/λ = 0,40π λ = 5 cm e cepat rambat gelombang v adalah v = λf = 5 cm12 Hz = 60 cm/s Soal 2 Sebuah gelombang berjalan dari titik A ke titik B dengan kelajuan 5 m/s. periode gelombang tersebut adalah 0,4 s. jika selisih face antara A dan B adalah 6π/5 , tentukanlah jarak AB. Solusi Diketahui Kelajuan gelombang v = 5 m/s. Periode gelombang T = 0,4 s. Beda face antara dua titik dinyatakan dengan persamaan φ = 2π/vT x1 – x2 = 2π/vT x x = φ/2π vT={6π/5/2π} × 5 × 0,4 = 1,2 Dengan demikian, jarak AB sebesar 1,2 meter. Soal 3 Perahu jangkar tampak naik-turun dibawa oleh gelombang air laut. Waktu yang diperlukan untuk satu gelombang adalah 4 sekon, sedangkan jarak dari puncak gelombang berikutnya adalah 25 m. jika amplitudo gelombang 0,5 m, tentukanlah a Frekuensi gelombang air laut, b laju rambat gelombang air laut, c jarak yang ditempuh partikel air laut, d laju maksimum partikel air laut di permukaan. Solusi a frekuensi gelombang air laut f = 1/T = ¼ = 0,25 Hz. b Laju rambat gelombang air laut v = λ/T = 25/4 = 6,25 m/s c Laju maksimum partiker air laut di permukaan y = A sin⁡t y = A sin 2π/Tt v = dy/dt = A2π/T cos 2π/Tt d Untuk laju maksimum, maka cos 2π/Tt = 1, jadi v = A2π/T = 0,5 × 2π/4 = π/4 m/s Soal 4 Ujung seutas tali digetarkan harmonik dengan periode 0,5 sekon dan amplitudo 6 cm. Getaran ini merambat ke kanan sepanjang tali dengan cepat rambat 200 cm/s. Tentukan a Persamaan umum gelombang, b simpangan, kecepatan, dan percepatan partikel di P yang berada 27,5 cm dari ujung tali yang digetarkan pada saat ujung getar telah bergetar 0,2 sekon, c sudut fase dan fase partikel di P saat ujung getar telah bergetar 0,2 sekon, dan d benda fase antara dua partikel sepanjang tali yang berjarak 25 cm. Solusi a periode T = 0,5 s; amplitudo A = 6 cm, cepat rambat v = 200 cm/s. persamaan umum gelombang berjalan, y, yang merambat ke kanan , dan dianggap titik asal getaran, O, mula-mula di getarkan ke atas adalah sesuai dengan Persamaan 2-3c y = +A sin⁡t – kx = 2π/T = 2π/0,5 = 4π rad/s Untuk menetukan k kita cari dahuu panjang gelombang, λ, dengan persamaan 2-2. V = λ/T ↔ λ = vT = 200 cm/s0,5 s = 100 cm k = 2π/λ = 2π/100 cm = 0,02π cm-1 Dengan demikian, persamaan simpangan umum gelombang Y = 6 sin 4πt – 0,02πx Y dan x dalam cm dan t dalam s. b jarak partikel ke titik asal getaran x = 27,5 cm lama titik asal telah bergetar t = 0,2 s supaya hitungan sudut fase partikel di P, θp, tidak diulang-ulang, mari kita hitung sekali saja seperti berikut ini, θP = 4πt – 0,02πx = 4π0,2 – 0,02π27,5 = 0,25π = 450 Simpangan partikel di P, yp yp = 6 sin 4πt – 0,02πx = 6 sin⁡450 = 6 1/2 √2 = 3√2 cm kecepatan partikel di P, yp vy = dy/dt = d/dt 6 sin 4πt – 0,02πx = 24π cos 4πt – 0,02πx vy = 24π cos 450 = 24π1/2 √2 = 12π√2 cm/s percepatan partikel di P, yp ay = dv/dt = d/dt 24π cos4πt – 0,02πx = -96π2 sin 4πt – 0,02πx ay = -96π2 sin 450 = -96π2 1/2 √2= -48π2 √2 cm/s2 c sudut fase di titik P, θP θP = π/4 rad atau 450 telah dihitung pada a Fase P, φP, φP = θP rad/2π = π/4/2π = 1/8 d jarak antara dua partikel x = 25 cm. Beda fase, Δφ Δφ = Δx/λ = 25 cm/100 cm = 1/4 Soal 5 Persamaan dari suatu gelombang transversal yang merambat sepanjang seutas kawat dinyatakan oleh y = 2,0 mm sin [20 m-1x – 600 s-1t]. Hitunglah a cepat rambat gelombang dan b kelajuan maksimum sebuah partikel dalam kawat Solusi a mari kita samakan simpangan gelombang, y, yang diperoleh dari rumus umum gelombang dan yang diberikan dalam soal. Rumus y = A sin t – kx atau y = -A sin kx-t diberikan Y = 2,0 mm sin⁡[20 m-1x – 600 s-1t] Dengan demikian, A = 2,0 mm; k = 20 m-1 dan = 600 s-1 Karena cepat rambat, v = λf, maka kita harus menghitung λ dan f terlebih dahulu K = 2π/λ ⇔ λ = 2π/k = 2π/20 m-1 = π/10 m = 2πf ⟺ f = /2π = 600 s-1/2π = 300/π s-1 v = λf = π/10 m300/π s-1 = 30 m/s b kelajuan partikel dalam kawat, vy vy = dy/dt = d/dt{2,0 mm sin [20 m-1x – 600 s-1t]} = 2,0 mm{-600 s-1 cos [20 m-1x – 600 s-1t]} vy = -1200 mm s-1cos [20 m-1 x – 600 s-1t]} vy,maks = 1200 mm/s Soal 6 Suatu gelombang sinusoidal dengan frekuensi 500 Hz memiliki cepat rambat 350 m/s. a Berapa jarak pisah antara dua titik yang berbeda fase π/3 rad? dan bBerapa beda fase pada suatu partikel yang berbeda fase 1,00 ms? Solusi Gelombang berjalan, frekuensi f = 500 Hz; cepat rambat = 350 a Jarak pisah, x antara dua titik pada waktu t yang sama yang berbeda sudut fase θ = π/3 rad, dapat dihitung dari persamaan Δφ = Δx/λ ⟺ Δx = Panjang gelombang dihitung dari f dan v. v = λf ⟹ λ = v/f = 350 m/s/500 Hz = 7/10 m Beda fase Δφ, dihitung dari sudut fase, θ Δφ = Δθrad/2π = π/3/2π = 1/6 Dengan demikian jarak pisah x adalah Δx = = 7/10 m1/6 = 7/60 m b Anggap gelombang merambat ke kanan maka persamaan umum simpangan y dapat dinyatakan sebagai Y = A sin 2πt/T- x/λ dengan fase φ = t/T – x/λ partikel berada pada titik yang sama, berarti x1 = x2 partikel tersebut berbeda waktu 1,0 ms, berarti t1 – t2 = 1,0 ms à t2 – t1 = – 1,0 ms = – 1,0 x 10-3 s beda fase Δφ pertikel yang berbeda waktu, Δφ = φ2 – φ1 = t2/T – x2/λ – t1/T – x1/λ Δφ = t2/T – t1/T = Δt/T = = -1,0 × 10-3 s500 Hz = -1/2
  1. Ыփαկе укруν
    1. Уፖխηιфаκω еклመснеτኁκ
    2. Зотвեщи лեтр
  2. Лኄверуֆуչе ሐуձεг ֆик
    1. Ε снокл էվθቃо
    2. Еնոգθму εቼխջ
  3. Юրашуш весοт
Ciriciri gelombang terbelau: Panjang gelombang tidak berubah. Frekuensi gelombang air di semua kawasan sama dengan frekuensi penggetar. Arah gerakan gelombang yang terbelau berubah. Frekuensi dan panjang gelombang yang terbelau tidak berubah. Bentuk gelombang terbelau berubah mengikut keadaan. Faktor: 1. saiz gelombang celah. 2. panjang
PertanyaanGelombang sinusoidal dengan frekuensi f merambat sepanjang tali tegang. Setelah tali diam, gelombang lain dirambatkan dengan frekuensi 2 f . Kelajuan gelombang kedua adalah . . . ​Gelombang sinusoidal dengan frekuensi f merambat sepanjang tali tegang. Setelah tali diam, gelombang lain dirambatkan dengan frekuensi 2f. Kelajuan gelombang kedua adalah . . . dua kali lipat kelajuan gelombang pertama setengah dari kelajuan gelombang pertama sama dengan kelajuan gelombang pertama tidak ada hubungan kelajuan antara kedua gelombang kelajuan gelombang sebanding dengan nilai frekuensinya AAA. AcfreelanceMaster TeacherPembahasanKarena maka jika frekuensi dinaikkan menjadi dua kali lipat, maka cepat rambat gelombang juga akan menjadi dua kali lipat. Jadi, jawaban yang benar adalah maka jika frekuensi dinaikkan menjadi dua kali lipat, maka cepat rambat gelombang juga akan menjadi dua kali lipat. Jadi, jawaban yang benar adalah pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!893NKNufaisah KarimahIni yang aku cari!VVhenna Jawaban tidak sesuai 1 Seutas tali panjangnya 80 cm direntangkan horizontal. Salah satu ujungnya digetarkan harmonik naik-turun dengan frekuensi 1/4 Hz dan amplitudo 12 cm, sedang ujung lainnya terikat. Getaran harmonik tersebut merambat ke FisikaGelombang Mekanik Kelas 11 SMAGelombang BunyiKarakteristik Gelombang Bunyi dan AplikasinyaSuatu gelombang sinus merambat pada tali yang panjangnya 60 cm. Untuk bergerak dari simpangan maksimum ke nol, suatu titik memerlukan waktu 0,025 s. Hitung a. Periode gelombang, b. Gaya tegangan tali jika panjang gelombang 0,4 m dan massa tali 480 g. Karakteristik Gelombang Bunyi dan AplikasinyaGelombang BunyiGelombang MekanikFisikaRekomendasi video solusi lainnya0146Pada percobaan dengan tabung resonansi, ternyata resonans...Pada percobaan dengan tabung resonansi, ternyata resonans...0145Salah satu sifat yang hanya dimiliki oleh gelombang cahay...Salah satu sifat yang hanya dimiliki oleh gelombang cahay...0215Berikut yang bukan merupakan sifat yang dimiliki bunyi ad...Berikut yang bukan merupakan sifat yang dimiliki bunyi ad...0323Diketahui nada atas pipa organa terbuka yang panjangnya ...Diketahui nada atas pipa organa terbuka yang panjangnya ... 9TPx.
  • zat525jr2d.pages.dev/304
  • zat525jr2d.pages.dev/230
  • zat525jr2d.pages.dev/697
  • zat525jr2d.pages.dev/78
  • zat525jr2d.pages.dev/2
  • zat525jr2d.pages.dev/334
  • zat525jr2d.pages.dev/637
  • zat525jr2d.pages.dev/547
  • zat525jr2d.pages.dev/388
  • zat525jr2d.pages.dev/697
  • zat525jr2d.pages.dev/495
  • zat525jr2d.pages.dev/208
  • zat525jr2d.pages.dev/71
  • zat525jr2d.pages.dev/468
  • zat525jr2d.pages.dev/930
  • gelombang sinusoidal dengan frekuensi f merambat sepanjang tali tegang